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LE'ITER TO THE EDITOR 

Ergodicity and density of states in a ID crystal? 

Jorge V JosC 
Physics Department, Northeastern University, Boston, MA 021 15, USA 

Received 11 November 1982 

Abstract. Using a decimation technique, the band structure in a ID periodic solid is shown 
to be related to the ergodic Ulam-Von Neumann map, C,+l = 1 -2CT. 

The Schrodinger equation with periodic potentials has been the subject of study of 
many papers in solid state physics. The Kronig-Penny (KP) model (1931) stands out 
as the original paper that clearly showed how the appearance of bands and gaps leads 
to the understanding of metals and semiconductors. In this paper we look at this old 
problem from a different point of view, that makes contact with ideas and results in 
the theory of dynamical systems, currently an active field of research. We consider 
the periodic KP model with S-function interactions in one dimension. The correspond- 
ing Schrodinger equation reads 

Here L is the length of the chain, Po the strength of the potentials, E the energy, 
n an integer and a the lattice spacing. Following the dynamical systems theory, instead 
of studying (1) we study its PoincarC map. This is easily constructed, noting that in 
between the S-function potentials the electrons described by (1) are free and that 
their wavefunction can be written as 

q, = q (n +a)  = A ,  eiakn + B, e-iakn, 

with [A,, B,]  the amplitudes of the waves in the nth cell, and k = (2E)"'. From the 
continuity of the wavefunction and its derivative at the lattice site nu, we obtain the 
second-order difference equation (see for example Helleman 1979) 

(2) 
This is the PoincarC map associated with (1). It involves three sites in the lattice 

and expresses the relation between the wavefunctions at the three lattice sites. 
In the derivation of this equation no approximations are made and therefore it 

has the same physical content as in (1). We now proceed to study this equation using 
the renormalisation group (RG) method. 

The RG method we use here consists of eliminating every other site in the lattice, 
leaving the form of the equation of motion unchanged. This procedure is known as 
decimation and has been used extensively in the theory of critical phenomena. Several 

q,+~ +rp,-l -&[(sin ka)/ka]q, = 2 cos ka q,. 

t Work supported in part by NSF-grant DMR-8114848. 
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authors have extended this method to treat tight-binding type problems (Stein and 
Krey 1978, Domany and Sarker 1979, Aoki 1980, GonGalves da Silva and Koiller 
1981). Here we follow the approach used by us elsewhere (JosC 1982). Specifically 
we rewrite (2) as 

Co(ka) =cos ku +Po(sin ku)/2ku. (4) 

Although (3) looks like a tight-binding equation the specific k dependence of CO 
is different and all important. The decimation procedure is carried out by writing the 
corresponding equation (3) for qn-l, and qn+1 on the right-hand side, and then 
substituting back into (3). As can be easily checked, the resulting equation is of the 
same form as (3) but with new lattice spacing, 2a, and a new C. Carrying out this 
procedure r times the renormalised equation reads 

Q n + 2 r f Q n - 2 r = 2 C r Q n ,  ( 5 )  

Cr+l = 2c;  - 1. 

and the recursion formula for C, is given by 

(6)  

This is a nonlinear recursion relation of a type studied extensively in the last few 
years (Collet and Eckmann 1980). The map given in (6) was first introduced by Ulam 
and Von Neumann (1947), and bears their name. It has also been studied extensively 
for values of A E [0,2] in 1 - AC; by Feigenbaum and others (Collet and Eckmann 
1980). The particular value A = 2 of interest in our analysis is special. Ulam and Von 
Neumann introduced this map with the aim of finding a random number generator 
for computer calculations. The map itself is known to be ergodic and mixing (Adler 
and Rivlin 1964). In order to see how this comes about and how it is connected with 
the band structure in solids, it is convenient to notice that the right-hand side of (6) 
is the Chebycheff polynomial of order 2. The general definition of these polynomials 
is 

Tn(x) = cos-1 n cos x ,  

and they satisfy the semigroup property 

T n  (7" (x )) = 7"n (x 1. (7) 

Thus if we rewrite (6) as 

Cr+1= T2(Cr). 

using (7) we can solve (6) ,  obtaining 

C, = Tzr(Co(ak)). (8) 

The map Tn(x) has been shown to be strongly mixing and ergodic (Adler and 
Rivlin 1964). The process being ergodic then allows us to replace averages of the type 
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Here p(C) becomes the probability measure of the ensemble representative of the 
dynamical process resulting from (6). In the particular case of the Chebysheff poly- 
nomials 

p ( C )  = (1 -c2)-*’2. (9) 

We can now make contact with the problem we started with. First notice that if 
we take as initial condition lCol > 1, then as we iterate the RG procedure C, + 00. On 
the other hand, if \Col < 1, then for all r, C, E [-1,1]. From the definition of CO we 
see that these are precisely the KP conditions to have bands (ICol 1) or gaps (IC01 > 1). 
This discussion can be made more rigorous (Josh 1982) in terms of convergence 
conditions for the self-energy and Green functions for the continued fraction solution 
of general finite difference equation models. Here this discussion is enough for our 
purposes. Now, from the ergodicity property of the map we can conclude that (9) 
gives the density of states for each one of the bands, i.e. for different values of k .  

Notice that the way in which we have obtained the density of states differs 
fundamentally from the method used by Goncalves da Silva and Koiller (1981). They 
used the standard definition of the density of states as the imaginary part of the Green 
function. Defining a renormalised Green function after r iterations, they calculate its 
imaginary part and thus the density of states. Here we have obtained p as the 
probability law associated with the chaotic process described by the deterministic 
equation of motion (6). 

To see how this is connected with our decimation procedure we can take, without 
loss of generality, Po = 0. In this case (3) acquires a tight-binding form with energy 
CO = 2 cos uk and hopping constants equal to one. As we change the scale in the 
model CO changes to 

C,(ka,)  = cos ku, = cos 2’ka. 

This means that the form of the energy relation remains the same at each stage 
of the RG iterations except for the magnitude of the lattice spacing. Further under- 
standing is gained if we look at figure l(a). Take the cross as the initial value for Co. 

1 
plE1 

Figure 1. (a )  Energy diagram, with the cross indicating the initial value for the RG 
iteration. ( b )  Histogram for the number of times the cross in (a)  occupies a given point 
in the renormalised energy diagram. 
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Then start iterating (6). At each stage of the iteration the curve for C, is homotopic 
to the curve for CO except that the abscissa is reduced in size by a factor 2-r .  If we 
plot a histogram of the number of times the cross occupies a given point in the 
renormalised energy diagram, we obtain the curve ( 6 )  shown in figure 1, which then 
gives the density of states for the model with Po = 0. If Po # 0 we can repeat the same 
procedure for all the other bands, getting the same qualitative result. 

It is possible that these ideas and results apply as well in higher dimensions as the 
KP analysis applies to two- and three-dimensional systems. This is of course clear in 
the case where the higher-dimensional Schrodinger equation is separable. 

Helpful conversations with T Brody and B Markiewicz are gratefully acknowledged. 
This work has been supported in part by a grant from the National Science Foundation 
DMR-8114848. 

Note added. After this paper was submitted for publication I learned that J Langlois, A Tremblay and B 
W Southern as well as S Alexander, D Bensimon, E Domany and S Kadanoff have found independently 
similar results to the ones presented here following different routes. I would like to thank A Tremblay and 
J Banavar for letting me know about these papers, and L Kadanoff for providing me with a copy of his 
work prior to publication. 
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